Iscriviti alla newsletter



Registrati alla newsletter (giornaliera o settimanale):
Ricevi aggiornamenti sulla malattia, gli eventi e le proposte dell'associazione. Il tuo indirizzo email è usato solo per gestire il servizio, non sarà mai ceduto ad altri.


I meccanismi per cui la privazione del sonno limita la capacità del cervello di formare nuovi ricordi



Studiando i topi, gli scienziati della Johns Hopkins University hanno rafforzato le evidenze che l'obiettivo fondamentale del sonno è ricalibrare le cellule del cervello responsabili dell'apprendimento e della memoria, in modo che gli animali possano 'solidificare' le lezioni apprese e usarle quando si risvegliano.


I ricercatori, una sintesi del cui lavoro appare online oggi 3 febbraio su Science, riferiscono anche di aver scoperto diverse molecole importanti che regolano il processo di ricalibrazione, così come la prova del fatto che la privazione del sonno, i disturbi del sonno e i sonniferi possono interferire con il processo.


"I nostri risultati fanno avanzare con solidità l'idea che il topo e presumibilmente il cervello umano possono memorizzare solo una certa quantità di informazioni prima di doversi ricalibrare", dice Graham Diering PhD, che ha condotto lo studio. "Senza il sonno e la ricalibrazione che avviene durante il sonno, i ricordi sono in pericolo di essere persi".


Diering spiega che l'attuale comprensione scientifica dell'apprendimento suggerisce che l'informazione è 'contenuta' nelle sinapsi, le connessioni tra i neuroni, attraverso cui comunicano. Sul 'lato di invio' della sinapsi vengono rilasciate molecole di segnalazione chiamate neurotrasmettitori dalla cellula cerebrale mentre 'spara'; sul 'lato ricevente', queste molecole vengono acquisite dalle proteine ​​dei recettori, che passano avanti il 'messaggio'. Se una cellula riceve abbastanza segnali attraverso le sue sinapsi, fa proseguire ('spara') i propri neurotrasmettitori.


Più in particolare, gli esperimenti sugli animali hanno dimostrato che le sinapsi sul neurone ricevente possono essere attivate aggiungendo o rimuovendo le proteine ​​recettoriali, rafforzandole o indebolendole in tal modo, e permettendo al neurone ricevente di ricevere più o meno input dai neuroni vicini che segnalano. Gli scienziati ritengono che i ricordi vengano codificati attraverso questi cambiamenti sinaptici.


Ma c'è un inghippo in questo modo di pensare, dice Diering, perché mentre i topi e altri mammiferi sono svegli, le sinapsi di tutto il cervello tendono ad essere rafforzate, non indebolite, spingendo il sistema verso il massimo carico. Quando i neuroni sono 'sovraccarichi' e costantemente in 'sparo', perdono la capacità di trasmettere informazioni, ostacolando l'apprendimento e la memoria.


Una possibile ragione per cui di solito i neuroni non sono mai 'sovraccarichi' è un processo che è stato ben studiato nei neuroni accresciuti in laboratorio, ma non negli animali viventi, svegli o addormentati. Conosciuto come 'ridimensionamento omeostatico progressivo', è un processo che indebolisce uniformemente di una piccola percentuale le sinapsi di una rete neurale, lasciando intatti i loro punti di forza relativi e permettendo la continuazione dell'apprendimento e della formazione di memoria.


Per scoprire se il processo si verifica nei mammiferi mentre dormono, Diering si è focalizzato sulle aree del cervello di topo responsabili dell'apprendimento e della memoria: l'ippocampo e la corteccia. Ha depurato le proteine ​​dalle sinapsi riceventi nei topi dormienti e svegli, cercando gli stessi cambiamenti osservati durante il ridimensionamento nelle cellule allevate in laboratorio.


I risultati hanno mostrato un calo del 20 per cento dei livelli di proteine nel recettore dei topi dormienti, indicando un indebolimento complessivo delle loro sinapsi, rispetto ai topi che erano svegli. "E' la prima prova del ridimensionamento omeostatico progressivo in animali vivi", dice Richard Huganir PhD, professore di neuroscienze, direttore del Dipartimento di Neuroscienze e autore senior dello studio. "Questo suggerisce che le sinapsi sono ristrutturate in tutto il cervello del topo ogni 12 ore, più o meno, un fatto abbastanza notevole".


Per sapere specificamente quali molecole sono responsabili del fenomeno, il team ha esaminato una proteina chiamata Homer1a, scoperta nel 1997 da Paul Worley MD, professore di neuroscienze, che faceva parte del team che ha condotto il nuovo studio. Gli studi hanno dimostrato che la Homer1a (dal nome dell'autore antico greco a causa dell'«odissea» scientifica necessaria per identificarlo) è importante per la regolazione del sonno e della veglia, e per il ridimensionamento omeostatico progressivo dei neuroni prodotti in laboratorio.


Ripetendo la precedente analisi delle proteine ​​sinaptiche, Diering ha trovato in effetti livelli molto più elevati (+250%) di Homer1a nelle sinapsi dei topi dormienti rispetto ai topi svegli. E nei topi geneticamente progettati per mancare della Homer1a, non era più presente la diminuzione precedente di proteine ​nei ​recettori sinaptici associata al sonno.


Per sapere come la Homer1a capisce quando i topi dormono o sono svegli, i ricercatori hanno esaminato il neurotrasmettitore noradrenalina, che induce il cervello a eccitarsi e a svegliarsi. Bloccando o aumentando i livelli di noradrenalina, sia nei neuroni di laboratorio che nei topi, i ricercatori hanno confermato che, quando i livelli di noradrenalina erano elevati, la Homer1a restava lontana dalle sinapsi; quando erano bassi, si raccoglieva lì.


Per verificare direttamente se la posizione della Homer1a è legata al sonno, il team ha tenuto svegli i topi per quattro ore in più, inserendoli in una gabbia non familiare. Alcuni hanno poi avuto due ore e mezza di 'sonno di recupero'. Come previsto, i livelli di Homer1a nelle sinapsi riceventi erano molto più alti nei topi privati ​​del sonno rispetto a quelli che hanno avuto il sonno di recupero. Ciò suggerisce, dice Diering, che la Homer1a capisce quando un animale ha 'bisogno di sonno', non solo che ora del giorno è.


Diering sottolinea che la necessità di sonno è controllata dall'adenosina, una sostanza chimica che si accumula nel cervello sveglio, provocando sonnolenza. (La caffeina, la droga psicoattiva più consumata al mondo, interferisce direttamente con l'adenosina). Quando, durante la privazione del sonno, i topi hanno ricevuto un farmaco che blocca l'adenosina, i livelli di Homer1a non sono più aumentati nelle loro sinapsi.


"Pensiamo che la Homer1a sia una specie di vigile urbano", dice Huganir. "E che valuta i livelli di noradrenalina e adenosina per determinare quando il cervello è sufficientemente tranquillo per iniziare il ridimensionamento".


Come test finale della loro ipotesi che il ridimensionamento durante il sonno è fondamentale per l'apprendimento e la memoria, i ricercatori hanno testato la capacità dei topi di imparare senza ridimensionamento. Topi singoli sono stati collocati in un'arena non familiare e hanno ricevuto una scossa elettrica delicata, al risveglio o proprio prima di addormentarsi. Alcuni topi hanno poi ricevuto un farmaco noto per prevenire il ridimensionamento.


Quando un topo non trattato con farmaco riceveva una scossa poco prima di dormire, il suo cervello eseguiva il processo di ridimensionamento e formava un'associazione tra quell'ambiente e lo shock. Quando venivano posti in quella stessa arena, i topi passavano circa il 25 per cento del loro tempo immobili, nel timore di un altro shock. Quando erano posti in una arena sconosciuta diversa, si bloccavano a volte, ma solo circa il 9 per cento del loro tempo, probabilmente perché non erano molto bravi a notare la differenza tra le due arene sconosciute.


Aspettandosi che i topi con farmaco che non riuscivano a ridimensionare durante il sonno avrebbero avuto ricordi più deboli e quindi si bloccassero di meno, Diering è stato sorpreso di vedere che erano immobili più a lungo (il 40 per cento del loro tempo), quando tornavano all'arena in cui avevano avuto la scossa. Ma i topi con farmaco erano immobili più a lungo (13 per cento del loro tempo), anche quando erano in una nuova arena. Quando la scossa veniva data al risveglio, il farmaco non faceva alcuna differenza nel tempo di blocco dei topi in alcuno degli ambienti, confermando che il ridimensionamento avviene solo durante il sonno.


"Pensiamo che la memoria della scossa fosse più forte nei topi con farmaco, perché le loro sinapsi non potevano subire il ridimensionamento, ma anche tutti i tipi di altri ricordi erano rimasti forti, così che i topi erano confusi e non potevano distinguere facilmente le due arene", dice Diering. "Questo dimostra perché 'dormirci sopra' può effettivamente chiarire le nostre idee. La linea di fondo è che, in realtà, il sonno non è un tempo di inattività per il cervello. Ha un lavoro importante da fare in quel momento, e noi nel mondo sviluppato stiamo imbrogliando noi stessi lesinandolo".


Huganir dice che il sonno è ancora un grande mistero: "In questo studio, abbiamo esaminato solo quello che succede in due aree del cervello durante il sonno. Ci sono probabilmente processi altrettanto importanti che accadono in altri settori, e in tutto il corpo, per quanto riguarda ciò".


Tra gli eventi che richiedono un ulteriore approfondimento, c'è il modo in cui apprendimento e memoria sono influenzati dai disturbi del sonno e da altre malattie note per disturbare il sonno negli esseri umani, come l'Alzheimer e l'autismo. Huganir dice anche che le benzodiazepine e altri farmaci che vengono comunemente prescritti come sedativi, miorilassanti e altri aiuti al sonno, sono noti per evitare il ridimensionamento omeostatico progressivo e probabilmente interferiscono con l'apprendimento e la memoria, anche se questa idea deve ancora essere testata sperimentalmente.

 

 

 


FonteJohns Hopkins Medicine (> English text) - Traduzione di Franco Pellizzari.

Riferimenti: Graham H. Diering, Raja S. Nirujogi, Richard H. Roth, Paul F. Worley, Akhilesh Pandey, Richard L. Huganir. Homer1a drives homeostatic scaling-down of excitatory synapses during sleep. Science, 2017 DOI: 10.1126/science.aai8355

Copyright: Tutti i diritti di eventuali testi o marchi citati nell'articolo sono riservati ai rispettivi proprietari.

Liberatoria: Questo articolo non propone terapie o diete; per qualsiasi modifica della propria cura o regime alimentare si consiglia di rivolgersi a un medico o dietologo. Il contenuto non dipende da, nè impegna l'Associazione Alzheimer onlus di Riese Pio X. I siti terzi raggiungibili da eventuali links contenuti nell'articolo e/o dagli annunci pubblicitari sono completamente estranei all'Associazione, il loro accesso e uso è a discrezione dell'utente. Liberatoria completa qui.

Nota: L'articolo potrebbe riferire risultati di ricerche mediche, psicologiche, scientifiche o sportive che riflettono lo stato delle conoscenze raggiunte fino alla data della loro pubblicazione.


 

Notizie da non perdere

Ricetta per una vita felice: ingredienti ordinari possono creare lo straordina…

9.09.2019 | Esperienze & Opinioni

Se potessi porre ad ogni essere umano sulla Terra una domanda - qual è la ricetta per un...

Come rimodellare con le arti l'assistenza alla demenza

14.12.2020 | Esperienze & Opinioni

Da bambina, Anne Basting è andata a trovare la nonna nella casa di riposo. 'Impressionante' è la ...

La consapevolezza di perdere la memoria può svanire 2-3 anni prima della compa…

27.08.2015 | Ricerche

Le persone che svilupperanno una demenza possono cominciare a perdere la consapevolezza dei propr...

Acetil-L-carnitina può aiutare la memoria, anche insieme a Vinpocetina e Huper…

27.03.2020 | Esperienze & Opinioni

Demenza grave, neuropatie (nervi dolorosi), disturbi dell'umore, deficit di attenzione e...

L'impatto del sonno su cognizione, memoria e demenza

2.03.2023 | Ricerche

Riduci i disturbi del sonno per aiutare a prevenire il deterioramento del pensiero.

"Ci...

Svolta per l'Alzheimer? Confermato collegamento genetico con i disturbi i…

26.07.2022 | Ricerche

Uno studio eseguito in Australia alla Edith Cowan University (ECU) ha confermato il legame tra Alzhe...

5 tipi di ricerca, sottostudiati al momento, potrebbero darci trattamenti per …

27.04.2020 | Esperienze & Opinioni

Nessun ostacolo fondamentale ci impedisce di sviluppare un trattamento efficace per il m...

Sintomi visivi bizzarri potrebbero essere segni rivelatori dell'Alzheimer…

1.02.2024 | Ricerche

Un team di ricercatori internazionali, guidato dall'Università della California di San F...

Le cellule immunitarie sono un alleato, non un nemico, nella lotta all'Al…

30.01.2015 | Ricerche

L'amiloide-beta è una proteina appiccicosa che si aggrega e forma picco...

Orienteering: un modo per addestrare il cervello e contrastare il declino cogn…

27.01.2023 | Ricerche

Lo sport dell'orienteering (orientamento), che attinge dall'atletica, dalle capacità di ...

Immagini mai viste prima delle prime fasi dell'Alzheimer

14.03.2017 | Ricerche

I ricercatori dell'Università di Lund in Svezia, hanno utilizzato il sincrotrone MAX IV ...

Il gas da uova marce potrebbe proteggere dall'Alzheimer

15.01.2021 | Ricerche

La reputazione dell'[[acido solfidrico]] (o idrogeno solforato), di solito considerato v...

Capire l'origine dell'Alzheimer, cercare una cura

30.05.2018 | Ricerche

Dopo un decennio di lavoro, un team guidato dal dott. Gilbert Bernier, ricercatore di Hô...

10 cose da non fare con i malati di Alzheimer

10.12.2015 | Esperienze & Opinioni

Mio padre aveva l'Alzheimer.

Vederlo svanire è stata una delle esperienze più difficili d...

Dott. Perlmutter: Sì, l'Alzheimer può essere invertito!

6.12.2018 | Ricerche

Sono spesso citato affermare che non esiste un approccio farmaceutico che abbia un'effic...

Marito riferisce un miglioramento 'miracoloso' della moglie con Alzh…

28.09.2018 | Annunci & info

Una donna di Waikato (Nuova Zelanda) potrebbe essere la prima persona al mondo a miglior...

Il cammino può invertire l'invecchiamento del cervello?

2.09.2021 | Esperienze & Opinioni

Il cervello è costituito principalmente da due tipi di sostanze: materia grigia e bianca...

Perché il diabete tipo 2 è un rischio importante per lo sviluppo dell'Alz…

24.03.2022 | Ricerche

Uno studio dell'Università di Osaka suggerisce un possibile meccanismo che collega il diabete all'Al...

Nuovo metodo di selezione farmaci spiega perché quelli di Alzheimer falliscono…

31.01.2022 | Ricerche

Analizzando i meccanismi di malattia nei neuroni umani, dei ricercatori dell'Università del...

'Ingorgo' di proteine nei neuroni legato alla neurodegenerazione

12.09.2022 | Ricerche

Un nuovo studio condotto da ricercatori dell'EPFL rivela che un complesso proteico malfunzionante pu...

Logo AARAssociazione Alzheimer OdV
Via Schiavonesca 13
31039 Riese Pio X° (TV)

Seguici su

 
enfrdeites

We use cookies

Utilizziamo i cookie sul nostro sito Web. Alcuni di essi sono essenziali per il funzionamento del sito, mentre altri ci aiutano a migliorare questo sito e l'esperienza dell'utente (cookie di tracciamento). Puoi decidere tu stesso se consentire o meno i cookie. Ti preghiamo di notare che se li rifiuti, potresti non essere in grado di utilizzare tutte le funzionalità del sito.