Vedere i ricordi mentre si formano

Scienziati dell'ISTA hanno esaminato in profondità l'elaborazione della memoria all'interno dell'ippocampo.

Hippocampus by Life Science Databases Creative CommonsI due ippocampi (Fonte: Life Science Databases, Creative Commons)

Assomigliando a un cavalluccio marino (dal greco hippos=cavallo e kampus=mostro marino), l'ippocampo è una regione cerebrale cruciale per la formazione della memoria. Ma fino a poco tempo fa, non riuscivamo a collegare la formazione della memoria a segnali molecolari specifici. Ora, un team di scienziati dell'Institute of Science and Technology Austria (ISTA) e del Max Planck Institute for Multidisciplinary Sciences di Gottingen / Germania ha probabilmente aperto questa scatola nera con uno studio pubblicato su PLOS Biology.


Henry Gustav Molaison, noto come paziente H.M., soffriva di epilessia. Pieno di convulsioni, fu indirizzato a un chirurgo, che ha localizzato l'epilessia nel lobo temporale all'interno del suo cervello, sede dell'ippocampo. Il 1 settembre 1953, H.M. ha subito un intervento chirurgico al cervello, per rimuovere l'ippocampo e curare l'epilessia. Dopo l'intervento chirurgico, l'epilessia e le convulsioni erano sparite, eppure H.M. aveva gravi effetti collaterali. Ora soffriva di amnesia anterograda: ricordava tutti gli eventi prima dell'intervento ma era incapace di formare nuovi ricordi. Il suo caso ha contribuito a collegare l'ippocampo alla funzione cerebrale e alla formazione della memoria.


Ora l'ippocampo è riconosciuto come una regione cruciale nel cervello umano, coinvolta nella formazione della memoria e nella navigazione spaziale. Converte la memoria da breve a lungo termine, facilitando la revisione dell'esperienza personale. In un nuovo studio guidato da Olena Kim, Yuji Okamoto e dal prof. Peter Jonas, un team internazionale di neuroscienziati ha scoperto nuovi dettagli sui meccanismi molecolari che guidano l'elaborazione della memoria.


Gli scienziati hanno dato uno sguardo preciso alle fibre muschiose delle sinapsi, un punto di connessione chiave tra cellule nervose specifiche (neuroni) nell'ippocampo, combinando approcci per studiarne struttura, molecole essenziali e funzionalità.

 

Il centro di memoria

All'interno dell'ippocampo, diversi tipi di neuroni sono coinvolti nell'elaborazione della memoria. Le cellule granulari, ad esempio, sono importanti per gestire le informazioni in arrivo. "Le cellule granulari ricevono vari segnali da altre regioni cerebrali, le devono elaborare e propagare ulteriormente", spiega Olena Kim, postdottorato all'Institute of Molecular Biotechnology dell'Accademia austriaca delle scienze.


Questi segnali vengono trasmessi attraverso l'assone delle cellule granulari, la loro estensione simile a un braccio, chiamata fibre muschiose. Queste fibre formano un punto di contatto per le cellule piramidali: la sinapsi di fibra muscosa. In questa connessione, le molecole messaggere, sotto forma di neurotrasmettitori, facilitano la comunicazione, innescando infine la formazione e il deposito della memoria.


Le sinapsi di fibra muschiosa sono caratterizzate dalla loro alta plasticità, il che significa che possono cambiare attività, struttura e connessioni in base agli stimoli. Questa adattabilità aiuta l'ippocampo a elaborare correttamente le informazioni e a distinguere tra segnali simili. La Kim cita un esempio: 

"Supponiamo che tu incontri contemporaneamente una pantera e un gatto nero, entrambi appaiono neri e felini. Eppure puoi distinguerne uno come gatto e uno come pantera. Le sinapsi di fibra muschiosa hanno un ruolo chiave nella codifica e nell'elaborazione di queste caratteristiche distintive, recuperando memoria e informazioni".

 

Sinapsi di fibra muschiosa in dettaglio

I dettagli molecolari esatti dell'elaborazione del segnale nelle sinapsi in fibra muschiosa sono ancora sconosciuti. Nel 2020, Peter Jonas, Carolina Borges-Merjane e Olena Kim hanno deciso di studiare la struttura delle sinapsi di fibra muschiosa, con una nuova tecnica chiamata 'Flash and Freeze', uno strumento potente, in cui i neuroni vengono congelati subito dopo essere stati stimolati.


"All'epoca, siamo riusciti a correlare i cambiamenti strutturali nelle sinapsi di fibra muschiosa alla loro funzionalità", afferma la Kim. "Tuttavia, volevamo spingere ulteriormente la tecnica e non solo guardare la struttura delle sinapsi, ma anche i cambiamenti che si verificano a livello molecolare quando vengono elaborati i segnali".


Gli scienziati erano particolarmente interessati a due proteine ​​situate nella zona di rilascio del neurotrasmettitore: la Cav2.1, canali di calcio, che sono cruciali perché l'afflusso di calcio attraverso quei canali innesca il rilascio di neurotrasmettitori, e la Munc13, che si basa sulla prontezza del neurotrasmettitore per essere rilasciato.


"Prima del nostro studio, tutto il lavoro su queste due proteine ​​è stato svolto con campioni cerebrali fissati chimicamente", continua la Kim. "Poiché quei campioni non sono vivi, non forniscono approfondimenti sui processi dinamici. Per il nostro nuovo studio, eravamo ansiosi di usare il tessuto cerebrale vivo per preservare dinamiche, composizioni naturali e localizzazione di queste proteine".

 

Una superficie simile alla luna

Con l'aiuto di colleghi dell'ISTA, il professor Ryuichi Shigemoto e lo scienziato Walter Kaufmann, gli scienziati hanno usato la tecnica 'freeze fracture labeling' (etichettatura della frattura di congelamento). Hanno stimolato chimicamente le cellule granulari nei campioni di tessuto cerebrale di topo ad attivare il processo di formazione della memoria. Poi il tessuto cerebrale è stato immediatamente congelato e separato in due metà. Il lato interno della sezione rappresenta la superficie esposta del tessuto all'interno: un'impronta 3D del tessuto in quel momento specifico, con proteine ​​e molecole incorporate.


Dopo aver marcato Cav2.1 e Munc13 per renderle visibili, i ricercatori hanno usato un microscopio elettronico per trovare la loro posizione esatta. Le immagini, che assomigliano a un primo piano della luna, hanno rivelato che, dopo la stimolazione, queste due proteine ​​si sono riorganizzate e si sono avvicinate.


Ulteriori test hanno rivelato che il ri-arrangiamento è strettamente correlato alla funzionalità della sinapsi di fibra muschiosa. Peter Jonas riassume: “All'attivazione, ci sono due cambiamenti. Primo, aumenta il numero di vescicole vicino alla membrana. Secondo, c'è un nano-riassestamento di Cav2.1 e Munc13, che rende le sinapsi più potenti e più precise. Entrambe le modifiche possono contribuire alla formazione della memoria".


Lo studio chiarisce la relazione tra struttura e funzione di una sinapsi chiave nell'ippocampo. I nostri ricordi spesso evocano immagini vivide. Ma fino ad ora, non eravamo riusciti a catturare i segnali molecolari che scatenano la formazione della memoria. Il presente studio è una pietra miliare in questo.

 

 

 


Fonte: Institute of Science and Technology Austria (> English) - Traduzione di Franco Pellizzari.

Riferimenti: O Kim, [+4], P Jonas. Presynaptic cAMP-PKA-mediated potentiation induces reconfiguration of synaptic vesicle pools and channel-vesicle coupling at hippocampal mossy fiber boutons. PLOS Biology, 2024, DOI

Copyright: Tutti i diritti di testi o marchi inclusi nell'articolo sono riservati ai rispettivi proprietari.

Liberatoria: Questo articolo non propone terapie o diete; per qualsiasi modifica della propria cura o regime alimentare si consiglia di rivolgersi a un medico o dietologo. Il contenuto non rappresenta necessariamente l'opinione dell'Associazione Alzheimer OdV di Riese Pio X ma solo quella dell'autore citato come "Fonte". I siti terzi raggiungibili da eventuali collegamenti contenuti nell'articolo e/o dagli annunci pubblicitari sono completamente estranei all'Associazione, il loro accesso e uso è a discrezione dell'utente. Liberatoria completa qui.

Nota: L'articolo potrebbe riferire risultati di ricerche mediche, psicologiche, scientifiche o sportive che riflettono lo stato delle conoscenze raggiunte fino alla data della loro pubblicazione.


 



Notizie da non perdere

Perché è importante la diagnosi precoce di demenza?

31.07.2020 | Esperienze & Opinioni

Vedere problemi di memoria nel tuo caro anziano può essere davvero spaventoso. Magari no...

Il litio potrebbe spiegare, e trattare, l'Alzheimer?

19.08.2025 | Ricerche

Qual è la prima scintilla che innesca la marcia ruba-memoria del morbo di Alzheimer (MA)...

Relazioni personali ricche migliorano il funzionamento del cervello

22.06.2020 | Ricerche

Come interagiscono gli individui, come si percepiscono uno con l'altro, e i pensieri e i...

Subiamo un 'lavaggio del cervello' durante il sonno?

4.11.2019 | Ricerche

Una nuova ricerca eseguita alla Boston University suggerisce che questa sera durante il ...

Ricetta per una vita felice: ingredienti ordinari possono creare lo straordina…

9.09.2019 | Esperienze & Opinioni

Se potessi porre ad ogni essere umano sulla Terra una domanda - qual è la ricetta per un...

Nuovo sensore nel cervello offre risposte all'Alzheimer

12.03.2021 | Ricerche

Scienziati della Università della Virginia (UVA) hanno sviluppato uno strumento per moni...

L'invecchiamento è guidato da geni sbilanciati

21.12.2022 | Ricerche

Il meccanismo appena scoperto è presente in vari tipi di animali, compresi gli esseri umani.

La scoperta del punto di svolta nell'Alzheimer può migliorare i test di n…

20.05.2022 | Ricerche

 Intervista al neurologo William Seeley della Università della California di San Francisco

...

Come vivere in modo sicuro con la demenza a casa tua

12.11.2020 | Esperienze & Opinioni

C'è un malinteso comune che la persona con una diagnosi di demenza perde la sua indipend...

Fruttosio prodotto nel cervello può essere un meccanismo che guida l'Alzh…

29.09.2020 | Ricerche

Una nuova ricerca rilasciata dalla University of Colorado propone che il morbo di Alzhei...

Livelli di ossigeno nel sangue potrebbero spiegare perché la perdita di memori…

9.06.2021 | Ricerche

Per la prima volta al mondo, scienziati dell'Università del Sussex hanno registrato i li...

Il Protocollo Bredesen: si può invertire la perdita di memoria dell'Alzhe…

16.06.2016 | Annunci & info

I risultati della risonanza magnetica quantitativa e i test neuropsicologici hanno dimostrato dei...

Variante della proteina che causa l'Alzheimer protegge dalla malattia

15.02.2021 | Ricerche

Le scoperte di un nuovo studio sul morbo di Alzheimer (MA), guidato da ricercatori dell...

Scoperto il punto esatto del cervello dove nasce l'Alzheimer: non è l…

17.02.2016 | Ricerche

Una regione cruciale ma vulnerabile del cervello sembra essere il primo posto colpito da...

Nuove case di cura: 'dall'assistenza fisica, al benessere emotivo�…

5.11.2018 | Esperienze & Opinioni

Helen Gosling, responsabile delle operazioni della Kingsley Healthcare, con sede a Suffo...

Scoperta importante sull'Alzheimer: neuroni che inducono rumore 'cop…

11.06.2020 | Ricerche

I neuroni che sono responsabili di nuove esperienze interferiscono con i segnali dei neu...

Rete nascosta di enzimi responsabile della perdita di sinapsi nell'Alzhei…

8.12.2020 | Ricerche

Un nuovo studio sul morbo di Alzheimer (MA) eseguito da scienziati dello Scripps Researc...

'Ingorgo' di proteine nei neuroni legato alla neurodegenerazione

12.09.2022 | Ricerche

Un nuovo studio condotto da ricercatori dell'EPFL rivela che un complesso proteico malfunzionante pu...

[Domenic Praticò] Consigli pratici per diventare un super-anziano

1.12.2025 | Esperienze & Opinioni

Quando si parla di invecchiamento, sappiamo che esso non è un processo uniforme e uguale per tutt...

L'Alzheimer è composto da quattro sottotipi distinti

4.05.2021 | Ricerche

Il morbo di Alzheimer (MA) è caratterizzato dall'accumulo anomale e dalla diffusione del...

Logo AARAssociazione Alzheimer OdV
Via Schiavonesca 13
31039 Riese Pio X° (TV)